

SEC Future Programs

• Technology Overview - Art Poland / GSFC

SEC Technology Overview

- Identification of technology needs is driven by SEC science requirements.
- The SEC Technology Working Group was established to develop a technology roadmap that will be integrated into the SEC Roadmap. The new technology roadmap is being developed with participants from NASA, universities, and industry.
- Technology requirements center around three general areas:
 - Instruments & Instrument Components
 - Spacecraft Systems
 - Transportation & Mobility

Instruments and Components

Introduction

Instruments:

- Measurements are driven by science questions.
- New instruments are designed by scientists and engineers to improve measurements.
- Scientists who will use the measurements need to be active participants in the instrument development process.

Components:

- Some instrument elements (e.g. optics, detectors) are frequently built with strong science oversight.
- Other general components (e.g. computers, electronic subsystems) are frequently purchased from industry.

Instrument Technology Needs:

- Innovative instruments
- Miniaturized sensors

Innovative Instruments

New techniques to observe physical parameters that:

- Cannot now be measured
- Fill critical measurement gaps that limit our understanding of physical phenomena
- Measure with greater certainty key parameters that now can be inferred only indirectly
- Open new frontiers of space physics exploration

• Examples:

- Very Low Energy (Sub-keV) Neutral Atom Imaging (H, D, He, Li, CNO)
- Electrical current density measurements
- Dust mass/charge spectrometry
- Solid-state X-ray imaging spectrometer
- UV polarization to measure the magnetic fields in the outer solar atmosphere
- Six-dimensional detectors (spatial, energy, polarization, time)

Detector Technology

Detector Technology

Science Drivers:

- We need to be able to measure the temperature, density, velocity, and magnetic field of various objects and places.
- It is only by measuring these quantities that we can understand what we are looking at.
- These quantities are needed for computer models that predict what will happen.
- Current capabilities do not allow us to measure them simultaneously, thus leading to uncertainty.

• Technical Capability:

- We are currently able to get number of photons as a function of position. (these are 2D detectors).
- We need further separation in energy such that we can measure the Doppler shift of spectral lines so we can get velocity.
- Measurement of the polarization of the photons will give us the direction and strength of the magnetic field.

Miniaturized Sensors

Advanced Technology is needed to:

- Consume less spacecraft resources
- Use less mass
- Optimize detection efficiency for better space, time, and energy resolution

• Examples:

- Miniaturized and/or optimized designs for the collector component of space instruments (e.g. photon or particle optics, antennas, probes)
- Miniature MEMS magnetometer probe
- Integrated CCD/active pixel sensors for charged particles
- Compact, lightweight energetic particle detectors (< 1 kg)
- Solid-State X-ray imaging spectrometers
- Light-weight deployable booms

Sensors and Instruments: Summary

- Improvements in sensor performance and reductions in instrument resource requirements will directly enable the utilization of compact, light weight spacecraft.
- SEC needs for new sensors and instruments can be accomplished by a competitively selected, peer-reviewed program for SEC instrument design and development.
- An early technology program with active scientist participation can greatly enhance the capability of future missions while significantly reducing development risk.

Spacecraft Systems: Introduction

SEC spacecraft technology needs fall into two general categories:

- Many small spacecraft to take many in-situ measurements of interplanetary and geospace
- Relatively larger systems to make remote sensing measurements of the Sun and Earth

System technology needs:

- In-situ
 - lightweight
 - enable constellation/formation flying
 - advanced materials, mechanisms, and packaging

- Remote sensing:

- high data rate communications
- Both:
 - power systems
 - harsh environment survivability
 - radiation hardened/tolerant space data systems

Constellations

What is needed:

- Lower component costs through the use of standard and configurable components
- Lower I&T costs through use of standards and configurable components and automated assembly and testing
- Innovative architectures to coalesce functions
- Software standards/re-use to allow low cost functional extension and adaptability
- Lightweight S/C to minimize launch costs

Path to achievement:

- Allow acquisition of large number constellations of satellites
- Minimize time and cost of assembly and test
- Improve reliability through re-use of thoroughly tested components
- Partner with industry to establish a production line

Constellation Roadmap

Revolutionize the multipoint remote and in-situ scientific investigations of key physical processes in the SEC Theme by creating new generations of high performance, integrated spacecraft observatories which are dramatically lighter, compact, and cost-effective.

Spacecraft Systems Conclusion

- There is a wide range of spacecraft systems development that could be of benefit to SEC:
 - Miniaturization
 - Formation flying systems
 - Radiation hard subsystems
 - Advanced communication
- Almost all of these advances would be of benefit to other disciplines besides SEC.
- Partnerships with industry should be developed to reliably and dependably produce these items.

Transportation and Mobility

- SEC needs advanced propulsion systems to achieve the following science objectives:
 - High energy orbits in the solar system
 - Solar Probe to get close to the Sun
 - Solar Polar
 - Interstellar Probe
 - Non-Keplerian orbits for specific vantage points
 - Solar Sentinels (0.95 AU)
 - Earth Pole Sitter
- Other disciplines and enterprises have similar propulsion system needs.

Solar Sail Roadmap

Solar sail propulsion enables new types of missions and dramatically lowers trip times for travel throughout the solar system and beyond.

SEC Proposals for the New Millenium Program

Space Technology Mission - 5

Process:

- Select themes for SEC and SEU missions
- Identify technology challenges
- Release call (FRP) for technologies
- Select technology providers for each theme
- Each theme develops proposal
- Mission selected
- AO for science instruments released
- Instruments selected mission is implemented
- Launch in 2003

Nanosatellites:

- Small (spinning) spacecraft, deployed and operated in constellations
- Each with multiple small fields and particles instrument technologies

Solar Sails:

- Propulsion system to place spacecraft in desired locations unreachable (or un-maintainable) by alternative propulsion systems
- Small fields and particles instrument technologies (on bus, sail or sub-sat)

Technology Summary

- SEC technology needs lie in 3 main areas:
 - Instruments, Spacecraft, and Transportation
- Other disciplines and enterprises will benefit from our enabling technologies, such as solar sails and miniaturized spacecraft.
- Advanced development in the areas of instruments and instrument subsystems could significantly enhance future mission capability while reducing mission risk. This can be accomplished by a competitively selected, peer-reviewed program for SEC instrument design and development.

